skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Biswas, Abhijit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Explicit Runge--Kutta (RK) methods are susceptible to a reduction in the observed order of convergence when applied to an initial boundary value problem with time-dependent boundary conditions. We study conditions on explicit RK methods that guarantee high order convergence for linear problems; we refer to these conditions as weak stage order conditions. We prove a general relationship between the method's order, weak stage order, and number of stages. We derive explicit RK methods with high weak stage order and demonstrate, through numerical tests, that they avoid the order reduction phenomenon up to any order for linear problems and up to order three for nonlinear problems. 
    more » « less
    Free, publicly-accessible full text available August 31, 2026
  2. Hexagonal boron nitride (h-BN) has emerged as a promising platform for generating room temperature single photons exhibiting high brightness and spin-photon entanglement. However, improving emitter purity, stability, and scalability remains a challenge for quantum technologies. Here, we demonstrate highly pure and stable single-photon emitters (SPEs) in h-BN by directly growing carbon-doped, centimeter-scale h-BN thin films using the pulsed laser deposition (PLD) method. These SPEs exhibit room temperature operation with polarized emission, achieving ag(2)(0) value of 0.015, which is among the lowest reported for room temperature SPEs and the lowest achieved for h-BN SPEs. It also exhibits high brightness (~0.5 million counts per second), remarkable stability during continuous operation (>15 min), and a Debye-Waller factor of 45%. First-principles calculations reveal unique carbon defects responsible for these properties, enabled by PLD’s low-temperature synthesis and in situ doping. Our results demonstrate an effective method for large-scale production of high-purity, stable SPEs in h-BN, enabling robust quantum optical sources for various quantum applications. 
    more » « less
    Free, publicly-accessible full text available June 20, 2026
  3. We used temperature-dependent spark plasma sintering to induce phase transformations of metastable 3D c-BN to mixed-phase 3D/2D c-BN/h-BN and ultimately to the stable 2D h-BN phase at high temperature, useful for extreme-temperature technology. 
    more » « less
  4. Abstract The development of high‐quality diamond films is pivotal for driving advances in quantum technology, power electronics, and thermal management. The ion implantation and lift‐off technique has emerged as a crucial method for fabricating diamond films with controlled thickness and scalable production of large‐area diamond wafers. This study advances the understanding of critical interface dynamics during diamond epilayer growth on ion‐implanted commercial diamond substrates. Leveraging high‐resolution cross‐sectional electron microscopy and spectroscopic analyses, the direct transformation of the damaged diamond layer is revealed into a graphitic layer during epilayer overgrowth, eliminating the need for high‐temperature annealing. Raman and photoluminescence spectroscopy mappings along the side section highlight the exceptional quality and purity of the epilayer, showcasing nitrogen‐vacancy center densities comparable to electronic‐grade diamond, making it highly suitable for quantum and electronic applications. Finally, the epilayer detaches efficiently via electrochemical etching, leaving a substrate with low surface roughness that is reusable for multiple growth cycles. These results provide valuable insights into refining the ion implantation and lift‐off process, bridging critical gaps in interface evolution, and establishing a foundation for sustainable, high‐performance diamond films across diverse technological applications. 
    more » « less
  5. Wide and ultrawide-bandgap semiconductors lie at the heart of next-generation high-power, high-frequency electronics. Here, we report the growth of ultrawide-bandgap boron nitride (BN) thin films on wide-bandgap gallium nitride (GaN) by pulsed laser deposition. Comprehensive spectroscopic (core level and valence band x-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and Raman) and microscopic (atomic force microscopy and scanning transmission electron microscopy) characterizations confirm the growth of BN thin films on GaN. Optically, we observed that the BN/GaN heterostructure is second-harmonic generation active. Moreover, we fabricated the BN/GaN heterostructure-based Schottky diode that demonstrates rectifying characteristics, lower turn-on voltage, and an improved breakdown capability (∼234 V) as compared to GaN (∼168 V), owing to the higher breakdown electrical field of BN. Our approach is an early step toward bridging the gap between wide and ultrawide-bandgap materials for potential optoelectronics as well as next-generation high-power electronics. 
    more » « less